How to solve the pressure problem of room-temperature superconduction?
The room-temperature superconductors can make the hovering trains possible, but the problem is the high pressure that that thing requires for working. And the 250 0000 bar pressure makes those systems dangerous.
The room temperature superconductor can hover the magnetic trains, and it can also make the new and extremely fast computers possible. But the needed pressure 250 Gigapascals what means 250 0000 bar, and that thing makes this structure very dangerous. If we are thinking about the way to use the room temperature superconductor, we must make that material safe.
The high pressure means that if there is even small damage in the pressure tube, that thing can cause a horrible accident. And maybe by using nanotechnology, we can create the small-size pressure tubes, where the superconducting materials will put.
We might just make the wire by using that superconducting material and put that wire in the tube, where the pressure has risen to a level that is necessary to make the superconduction possible. In the high-level of pressure, the molecules of the superconducting material are locked in their position, and the extremely high pressure will deny the molecular oscillation of that material.
So the tubes can be made by using nanotechnology, and the small diameter of the high-pressure channels is making those systems safer, and the wires can put in the armor, which denies the damages if one of those pressure tubes is breaking. Another way to make the room-temperature superconduction is to use the magnetic press, which is used in the fusion tests. In this case, the superconducting material would put in the tube, which will press by using the stable magnetic field, and that would make it possible to make the safety wire, where the electricity travels without resistance.
That kind of magnets would make the revolution for creating the levitating trains, what is hovering above the magnetic field. That kind of system requires powerful electric magnets, and in those cases, the problem is that the resistance of the metals causes the heat. And if the superconducting materials cannot use in those structures, the entire railroad would start to shine red. So the room-temperature superconductors would create the new type of railroads possible, but the problem is the extremely high pressure, what the system requires.
Sources:
https://www.quantamagazine.org/physicists-discover-first-room-temperature-superconductor-20201014/
https://en.wikipedia.org/wiki/Room-temperature_superconductor
Comments
Post a Comment