Skip to main content

Nanotubes are not standing forever. But they are ultimate tools.

 Nanotubes are not standing forever. But they are ultimate tools. 


The nanotubes are vulnerable to pulling. If the atoms that are creating nanotube would be separated. That thing will pull them away. The difference between carbon-based nanotubes and metal is that carbon nanotubes are not elastic. They can cut before previous damages. And that thing is one of the weaknesses of nanotubes. 

Every material has limits. And even nanotubes cannot stand forever. The thing is that stress and other things are causing the situation that sometimes even diamonds will break. The fact is nanotubes are strong and very useful materials for many purposes. They can use in modern photon-based computers for protecting laser rays for eavesdroppers. And in quantum computers, the qubit can travel through nanotubes that protect them against outcoming effects. 


xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx



Image 1: "Rice University researchers determined several ways a nanotube experiences plastic failure, either through dislocation movement under 6% strain (here) or through shear band formation under 14% strain. Both mechanisms, seen in kinetic Monte Carlo simulations, only activate under extreme conditions, so neither appears to be a significant factor in the fatigue of the nanotubes. Credit: Nitant Gupta/Yakobson Research Group" (https://scitechdaily.com/nanotube-fibers-stand-strong-but-for-how-long-under-stresses-and-strains/)


Image 2: "Rice University researchers determined several ways a nanotube experiences plastic failure, either through dislocation movement under 6% strain or in this animation through shear band formation under 14% strain. Both mechanisms, seen in kinetic Monte Carlo simulations, only activate under extreme conditions, so neither appears to be a significant factor in the fatigue of the nanotubes. Credit: Nitant Gupta/Yakobson Research Group" (https://scitechdaily.com/nanotube-fibers-stand-strong-but-for-how-long-under-stresses-and-strains/)


xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx


The nanotubes can also protect things like scanning tunneling microscopes and a new type of laser microscopes. In those systems, the ion will hover in the nanotube. Or laser rays will just send through the nanotube and that thing protects the measurement system against non-controlled effects. When an extremely thin system scans the surface of the layer even one air molecule can cause errors for measurement. 


xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

If the scanning tunneling microscope uses superpositioned and entangled photons for scanning surfaces. That system sees even individual electrons. 

The accuracy of the scanning tunneling microscopes is so high. That they are seeing individual atoms. But the quantum entanglement would make those scanning tunneling microscopes more powerful than ever before. 

If the system uses superpositioned and entangled photons or electrons for scanning surfaces. That system sees even the individual electrons. 

But the superpositioned and entangled photons require extremely high controlled conditions. So the superposition can conduct through the nanotube that protects it from the outcoming effects. 


xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx



Image 3: "An electron wavepacket is directed at a potential barrier. Note the dim spot on the right that represents tunneling electrons". (Wikipedia, Quantum tunneling)

The nanotubes can give more power to ion engines. 


Also, maybe someday nanotubes can use for creating rocket engines. That will use quantum tunneling for making faster exhaust gas. In those futuristic ion engines, the quantum tunneling makes it possible that the ions or electrons and protons can travel faster than in so-called regular rocket engines. 

If the ion engines ion flow will be covered by microwaves. That thing protects them to side coming electromagnetic radiation. The side coming radiation along with quantum fields are the thing that slows the particles. 

The quantum tunneling makes it possible that the speed of the particle is rising to a level that is higher than everywhere else. And nanotubes can use to create conditions. Where the particle's speed is so close to the speed of light. As possible.

Researchers can theoretically make the conditions where the speed of ions will rise higher than in normal space by creating the radio- or microwaves that travel to the direction where the exhausting particles are traveling. That electromagnetic field removes the quantum fields that are crossing the flight path of the outcoming particles.


https://scitechdaily.com/nanotube-fibers-stand-strong-but-for-how-long-under-stresses-and-strains/

https://en.wikipedia.org/wiki/Monte_Carlo_method

https://en.wikipedia.org/wiki/Quantum_tunnelling

Images 1 and 2:https://scitechdaily.com/nanotube-fibers-stand-strong-but-for-how-long-under-stresses-and-strains/

Image3: https://en.wikipedia.org/wiki/Quantum_tunnelling


https://thoughtsaboutsuperpositions.blogspot.com/

Comments

Popular posts from this blog

Antimatter motor

Antimatter motor Antimatter would be an effective fuel for interstellar spacecraft Antimatter would be the most effective power source in the world. It will be the most suitable motor for interstellar spacecraft, but the problem is that thing is very reactive. And actually one of the biggest problems with this kind of motor is that the gram of antimatter would turn the entire planet to the molecular nebula. So this kind of motor can produce only outside of our solar system. Producing antimatter would need large particle accelerators, and that kind of systems might look like giant donuts, what is floating on the space. There are two ways to create the antimatter motor, one is to store the anti-ions in the magnetic bottle, where the pushing magnetic field will keep those ions away from the wall of the bottle, and then the antimatter would conduct to the water or some other particle. The huge explosion or annihilation reaction would send the rocket to a very high speed. The antimatt...

Thoughts about strong leadership

Thoughts about strong leadership Everybody knows, how the dictators would rise in the power of the nation, and the thing what makes people supporting those persons is that they offer strong leadership as the way to make nation proud. And also they have always the same parroting, the foreigners and other nations have a too strong influence in the country. But what makes those persons like some Robert Mugabe or Kim Jong Un to think that they are only possible leaders, and why people would need them? Why there is nobody else allowed to try to come to the head of the state, or even try to challenge those leaders? If they are so popular as they want people to think or believe, why they don't tolerate any kind of opposition if they are done so good and big actions for their people, that they are celebrated in every home in their country. The thing that would return the morale and spine for the nation is the strong leader, who would put the state back in order and row. The thing is ...

Next-generation nanotechnology can be independent-operating molecule-sized robots.

 Next-generation nanotechnology can be independent-operating molecule-sized robots. "A DNAzyme (red) uses its binding arms to dock at a specific location on an RNA strand (yellow) and then cleaves it at its core. High-resolution, real-time NMR, Electron Paramagnetic Resonance, and Fluorescence Spectroscopy." "As well as Molecular Dynamics Simulations are used to identify the structure. And catalytic mechanisms of the DNAzyme. Credit: HHU/Manuel Etzkorn" (https://scitechdaily.com/dnazymes-how-active-dna-biocatalysts-that-destroy-unwanted-rna-molecules-work/) The active DNA catalysts are the gate to DNA-controlled, independently-operating, molecular-size nanomachines.  The DNAzymes or active DNA biocatalysts are next-generation tools for destroying unwanted RNA. The DNA molecule is one of the tools. That can use for controlling molecular-size machines. DNA is like a chemical computer program. And if the researchers can make synthetic DNA that can make exactly what the...