Things like BlowFish and TwoFish encryption are been begin to the development of quantum cryptology. The virtual model of quantum encryption uses the series of prime numbers along with some other numbers. For the multiplication of the ASCII codes.
Those prime numbers can be so-called quantum prime numbers, and they can be decimal numbers that are involving thousands of numbers. So the creation of those numbers is difficult. But quantum computers changed the game. They can create those quantum prime numbers in a very short period.
Quantum cryptology is like the use of imaginary numbers to create an encryption algorithm. But in the real quantum encryption process, the encryption key is stored in a physical form called a qubit. The qubits are physical components, and the hackers cannot get data from them without destroying those qubits.
The thing that makes the quantum system very secure. Qubits can be photons, electrons, protons, quarks, or some ions. The information will load to qubit and the breaker must know, what is the thing that forms qubit? If the qubit is made by using protons the system cannot open data if it uses electrons or photons as qubits. The decoding key can be stored as an example in the Einsteinium ions and then the receiving system can get the decoding key from the quantum USB memory.
In real cryptology, nobody sends the decoding key by using radio transmission. Same way as in binary systems. In quantum systems, the system can store decoding algorithms in quantum USB. Which is the thermos bottle where qubits are stored. And then the courier will connect that quantum USB to the system.
There is made research for securing data transmissions by using ultra-radioactive isotopes. The highly radioactive isotope that exists for only a couple of seconds can use as crystals in oscillation circuits. When massage has left. Warming of the circuit destroys those crystals.
If the decoding key is stored in the short-living radioactive ions those systems can be unbreakable. And the reason for that is the receiving system must know what kind of qubits is used for storing the encryption key.
Even if atoms or ions cannot use to transmit data in the quantum processors they can use to store the encryption keys. If the receiving system needs to open a message it requires the information on what kind of qubit the transmitting system used.
Those quantum communication systems might have thermos bottles where the qubits that are storing qubits that are involving the decoding algorithms. The system must know what is the bottle. And where are certain qubits? And the transmitting system can say that the "decoding algorithm is in bottle 4".
The algorithm can be stored in the short-living radioactive ions or atoms. And when it's downloaded to the system. The high temperature makes that ion vanish because of radioactive breakup. The system must not know what kind of qubit the data is stored. And short-living radioactive isotopes can be stored at zero kelvin temperature.
The quantum encryption system can involve multiple internal systems. And the reason why it can use highly radioactive isotopes in ultra-secured data transmissions is that those isotopes are dangerous to handle. And that's why nobody can steal them. In some visions, the quantum systems could use antimatter as the qubits. When the system used that qubit, it will destroy it immediately.
https://www.thetimes.co.uk/article/quantum-cryptography-raises-possibility-of-unbreakable-codes-jrxx8mw20
https://miraclesofthequantumworld.blogspot.com/
Comments
Post a Comment