Skip to main content

Quantum cryptography makes it possible to create unbreakable codes.

 



Things like BlowFish and TwoFish encryption are been begin to the development of quantum cryptology. The virtual model of quantum encryption uses the series of prime numbers along with some other numbers. For the multiplication of the ASCII codes. 

Those prime numbers can be so-called quantum prime numbers, and they can be decimal numbers that are involving thousands of numbers. So the creation of those numbers is difficult. But quantum computers changed the game. They can create those quantum prime numbers in a very short period. 

Quantum cryptology is like the use of imaginary numbers to create an encryption algorithm. But in the real quantum encryption process, the encryption key is stored in a physical form called a qubit. The qubits are physical components, and the hackers cannot get data from them without destroying those qubits. 

The thing that makes the quantum system very secure. Qubits can be photons, electrons, protons, quarks, or some ions. The information will load to qubit and the breaker must know, what is the thing that forms qubit? If the qubit is made by using protons the system cannot open data if it uses electrons or photons as qubits. The decoding key can be stored as an example in the Einsteinium ions and then the receiving system can get the decoding key from the quantum USB memory. 

In real cryptology, nobody sends the decoding key by using radio transmission. Same way as in binary systems. In quantum systems, the system can store decoding algorithms in quantum USB. Which is the thermos bottle where qubits are stored. And then the courier will connect that quantum USB to the system. 

There is made research for securing data transmissions by using ultra-radioactive isotopes. The highly radioactive isotope that exists for only a couple of seconds can use as crystals in oscillation circuits. When massage has left. Warming of the circuit destroys those crystals. 

If the decoding key is stored in the short-living radioactive ions those systems can be unbreakable. And the reason for that is the receiving system must know what kind of qubits is used for storing the encryption key.

Even if atoms or ions cannot use to transmit data in the quantum processors they can use to store the encryption keys. If the receiving system needs to open a message it requires the information on what kind of qubit the transmitting system used. 

Those quantum communication systems might have thermos bottles where the qubits that are storing qubits that are involving the decoding algorithms. The system must know what is the bottle. And where are certain qubits? And the transmitting system can say that the "decoding algorithm is in bottle 4". 

The algorithm can be stored in the short-living radioactive ions or atoms. And when it's downloaded to the system. The high temperature makes that ion vanish because of radioactive breakup. The system must not know what kind of qubit the data is stored. And short-living radioactive isotopes can be stored at zero kelvin temperature. 

The quantum encryption system can involve multiple internal systems. And the reason why it can use highly radioactive isotopes in ultra-secured data transmissions is that those isotopes are dangerous to handle. And that's why nobody can steal them. In some visions, the quantum systems could use antimatter as the qubits. When the system used that qubit, it will destroy it immediately. 


https://www.thetimes.co.uk/article/quantum-cryptography-raises-possibility-of-unbreakable-codes-jrxx8mw20


https://miraclesofthequantumworld.blogspot.com/

Comments

Popular posts from this blog

Antimatter motor

Antimatter motor Antimatter would be an effective fuel for interstellar spacecraft Antimatter would be the most effective power source in the world. It will be the most suitable motor for interstellar spacecraft, but the problem is that thing is very reactive. And actually one of the biggest problems with this kind of motor is that the gram of antimatter would turn the entire planet to the molecular nebula. So this kind of motor can produce only outside of our solar system. Producing antimatter would need large particle accelerators, and that kind of systems might look like giant donuts, what is floating on the space. There are two ways to create the antimatter motor, one is to store the anti-ions in the magnetic bottle, where the pushing magnetic field will keep those ions away from the wall of the bottle, and then the antimatter would conduct to the water or some other particle. The huge explosion or annihilation reaction would send the rocket to a very high speed. The antimatt...

The cyborg lichen can be one of the most exotic visions of what the high-tech civilization might look like.

.     The cyborg lichen can be one of the most exotic visions of what the high-tech civilization might look like. Above is the image of the nano-submarine. There is introduced an idea, that this kind of system would equip with living neurons, which makes it like some kind of artificial bug or mosquito. The idea is that the robot can take the nutrient by using the robot tube, which acts like a proboscis. The neurons can get nutrients and the rest of the machine can use small fuel cells or the energy to that system can deliver by using the radio waves. Futurologists are thinking about the ideas, what the hybridization of the neurons and machine would look like? Could the hyper-technical civilization look like the group of midget submarines? Those submarines might take nutrients for the neurons, what is living in them. The purpose of the midget submarines, which might be size less than a couple of millimeters would maximize the survivability of the neurons. One of the most intere...

Could this be the thing, that some people don't want you to know about zombies?

Could this be the thing, that some people don't want you to know about zombies? The simplest way to control zombies, which are made by using tetrodotoxin, which is called "zombie poison" is to use the automatic dispenser, which is normally used in diabetes treatment. In this case, the dispenser would be loaded by using tetrodotoxin. If the level of this poison is right, the person would be totally under the control of other people. And if the system cannot detect this poison there is a possibility to make the laboratory experiment when the staff will follow the decrease of the tetrodotoxin, and then the system can use a simple clock, which will inject poison to the body of a victim after a certain time. This would be an effective tool in the hands of military and counter-terror operators. Those zombies can be captured enemy operators, who will send back, and then they just kill their ex-partners. By using genetically engineered bacteria could be possible to create t...